Une propriété de contraction pour les systèmes de lois de conservation

31,25 €

32,90 €

-5%

Frais d'envoi limités à 4,90 € pour la France métropolitaine quel que soit le nombre d'articles. Délai de livraison : 2 à 5 jours.
Livraison dans le monde entier.

Le problème considéré dans cet ouvrage est celui de Cauchy pour les systèmes de lois de conservation hyperboliques.

L'apparente simplicité de ce problème contraste avec la difficulté des problèmes liés à sa résolution, tant du point de vue théorique que de celui de l'analyse numérique.

Ce travail est consacré à la propriété de dépendance continue des solutions faibles entropiques de ce problème par rapport aux données initiales dans le cas général des systèmes vectoriels.

Cette propriété est essentielle à la détermination de l'unicité des solutions de tels problèmes.

Nous construisons une métrique équivalente à la métrique L1, pour laquelle nous établissons une propriété de contraction dans le cadre du schéma wave front tracking pour des systèmes en une dimension d'espace.

Nous donnons aussi plusieurs cas d'application de cette méthode: le problème de Riemann scalaire, le système en une dimension d'espace avec solution régulière, l'équation scalaire avec solution faible entropique et le système 2×2.

Plus de détails

Livraison
Envoi en courrier suivi.
Livraison sous 2 à 4 jours en France et dans le monde entier.
Programme de fidélité
Votre panier totalisera 3 points fidélité vous offrant lors de votre prochain achat une réduction de 1,50 €
Avis clients
Soyez le premier à partager votre avis sur ce produit