Les algèbres de chemins de Leavitt

43,60 €

45,90 €

-5%

Frais d'envoi limités à 4,90 € pour la France métropolitaine quel que soit le nombre d'articles. Délai de livraison : 2 à 5 jours.
Livraison dans le monde entier.

Algèbres

L’objectif de ce travail est de faire la synthèse de travaux de M.

Siles Molina, de G.

Aranda Pino et de G.

Abrams qui portent sur les algèbres de chemins de Leavitt et qui s’inscrivent dans le cadre de plusieurs études consacrées à ces algèbres.

Les algèbres de chemins de Leavitt sont des K-algèbres de chemins associées à des graphes et satisfaisant certaines relations.

Elles peuvent être considérées comme des géréralisations naturelles des algèbres de Leavitt L(1, n) de type (1, n) introduites et étudiées par Leavitt dans le but de donner des exemples d’algèbres qui ne satisfont pas la propriété IBN, i.e.

invariant basis number.

Les algèbres de chemins de Leavitt qu’on se propose d’étudier dans ce travail sont une généralisation naturelle des algèbre de Leavitt L(1, n) de type (1, n).

Par ailleurs, ces algèbres sont perçues comme une version algébrique des C- algèbres de graphes de Cuntz-Krieger.

Plus de détails

Livraison
Envoi en courrier suivi.
Livraison sous 2 à 4 jours en France et dans le monde entier.
Programme de fidélité
Votre panier totalisera 4 points fidélité vous offrant lors de votre prochain achat une réduction de 2,00 €
Avis clients
Soyez le premier à partager votre avis sur ce produit