LSTM Recurrent Neural Networks for Signature Verification

46,55 €

49,00 €

-5%

Frais d'envoi limités à 4,90 € pour la France métropolitaine quel que soit le nombre d'articles. Délai de livraison : 2 à 5 jours.
Livraison dans le monde entier.

A Novel Approach

The author investigated the application of Long Short-Term Memory (LSTM) Recurrent Neural Networks (RNNs) to the task of signature verification.

Traditional RNNs are capable of modeling dynamical systems with hidden states; they have been successfully applied to domains ranging from financial forecasting to control and speech recognition.

This manuscript is the result of successfully applying on-line signature time series data to traditional LSTM, LSTM with forget gates and LSTM with peephole connections algorithms originally developed by S.

Hochreiter and J.

Schmidhuber.

It can be clearly seen in this pattern classification problem that traditional LSTM RNNs outperform LSTMs with forget gates and peephole connections.

The latter also outperform traditional RNNs which cannot seem to even learn this task due to the long-term dependency problem.

Plus de détails

Livraison
Envoi en courrier suivi.
Livraison sous 2 à 4 jours en France et dans le monde entier.
Programme de fidélité
Votre panier totalisera 4 points fidélité vous offrant lors de votre prochain achat une réduction de 2,00 €
Avis clients
Soyez le premier à partager votre avis sur ce produit