BEEDEA's Performance on Knapsack problem

27,55 €

29,00 €

-5%

Frais d'envoi limités à 4,90 € pour la France métropolitaine quel que soit le nombre d'articles. Délai de livraison : 2 à 5 jours.
Livraison dans le monde entier.

Study of the performance of the Balanced Explore Exploit Distributed Evolutionary Algorithm “BEEDEA” on the multiobjective knapsack problem

Most real world problems require the simultaneous optimization of multiple, competing, criteria (or objectives).

In this case, the aim of a multiobjective resolution approach is to find a number of solutions known as Paretooptimal solutions.

Evolutionary algorithms manipulate a population of solutions and thus are suitable to solve multi-objective optimization problems.

In addition parallel evolutionary algorithms aim at reducing the computation time and solving large combinatorial optimization problems.

In this work we study the performance of the “Balanced Explore Exploit Distributed Evolutionary Algorithm” (BEEDEA) [1] on the multi-objective Knapsack problem which is a combinatorial optimization problem.

BEEDA is implemented after some improvements and tested on the Knapsack problem.

Key words: multi-objective optimization, evolutionary algorithms, Knapsack problem, distributed metaheuristics.

Plus de détails

Livraison
Envoi en courrier suivi.
Livraison sous 2 à 4 jours en France et dans le monde entier.
Programme de fidélité
Votre panier totalisera 2 points fidélité vous offrant lors de votre prochain achat une réduction de 1,00 €
Avis clients
Soyez le premier à partager votre avis sur ce produit